3.7.18 \(\int \frac {\sqrt {\sec (c+d x)}}{(a+b \sec (c+d x))^2} \, dx\) [618]

Optimal. Leaf size=227 \[ \frac {b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a \left (a^2-b^2\right ) d}+\frac {\left (2 a^2-b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 \left (a^2-b^2\right ) d}-\frac {b \left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 (a-b) (a+b)^2 d}-\frac {b \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \sec (c+d x))} \]

[Out]

-b*sin(d*x+c)*sec(d*x+c)^(1/2)/(a^2-b^2)/d/(a+b*sec(d*x+c))+b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*
EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/d/(a^2-b^2)+(2*a^2-b^2)*(cos(1/2*d*x
+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^
2/(a^2-b^2)/d-b*(3*a^2-b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*a/
(a+b),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/(a-b)/(a+b)^2/d

________________________________________________________________________________________

Rubi [A]
time = 0.26, antiderivative size = 227, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3928, 4191, 3934, 2884, 3872, 3856, 2719, 2720} \begin {gather*} -\frac {b \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) (a+b \sec (c+d x))}+\frac {\left (2 a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d \left (a^2-b^2\right )}+\frac {b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d \left (a^2-b^2\right )}-\frac {b \left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d (a-b) (a+b)^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sec[c + d*x]]/(a + b*Sec[c + d*x])^2,x]

[Out]

(b*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*(a^2 - b^2)*d) + ((2*a^2 - b^2)*Sqrt[Co
s[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*(a^2 - b^2)*d) - (b*(3*a^2 - b^2)*Sqrt[Cos[c +
d*x]]*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*(a - b)*(a + b)^2*d) - (b*Sqrt[Sec[c
+ d*x]]*Sin[c + d*x])/((a^2 - b^2)*d*(a + b*Sec[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3928

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-b)*d
*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 1)/(f*(m + 1)*(a^2 - b^2))), x] + Dist[1/((m
 + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[b*d*(n - 1) + a*d*(m + 1)*C
sc[e + f*x] - b*d*(m + n + 1)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] &&
LtQ[m, -1] && LtQ[0, n, 1] && IntegersQ[2*m, 2*n]

Rule 3934

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4191

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Dist[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2), Int[(d*Csc[
e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Dist[1/a^2, Int[(a*A - (A*b - a*B)*Csc[e + f*x])/Sqrt[d*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {\sec (c+d x)}}{(a+b \sec (c+d x))^2} \, dx &=-\frac {b \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \sec (c+d x))}+\frac {\int \frac {-\frac {b}{2}-a \sec (c+d x)+\frac {1}{2} b \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))} \, dx}{-a^2+b^2}\\ &=-\frac {b \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \sec (c+d x))}-\frac {\int \frac {-\frac {a b}{2}-\left (a^2-\frac {b^2}{2}\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{a^2 \left (a^2-b^2\right )}-\frac {\left (b \left (3-\frac {b^2}{a^2}\right )\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx}{2 \left (a^2-b^2\right )}\\ &=-\frac {b \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \sec (c+d x))}+\frac {b \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{2 a \left (a^2-b^2\right )}+\frac {\left (2 a^2-b^2\right ) \int \sqrt {\sec (c+d x)} \, dx}{2 a^2 \left (a^2-b^2\right )}-\frac {\left (b \left (3-\frac {b^2}{a^2}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{2 \left (a^2-b^2\right )}\\ &=-\frac {b \left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 (a-b) (a+b)^2 d}-\frac {b \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \sec (c+d x))}+\frac {\left (b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a \left (a^2-b^2\right )}+\frac {\left (\left (2 a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 a^2 \left (a^2-b^2\right )}\\ &=\frac {b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a \left (a^2-b^2\right ) d}+\frac {\left (2 a^2-b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 \left (a^2-b^2\right ) d}-\frac {b \left (3 a^2-b^2\right ) \sqrt {\cos (c+d x)} \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 (a-b) (a+b)^2 d}-\frac {b \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d (a+b \sec (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 32.84, size = 251, normalized size = 1.11 \begin {gather*} \frac {\cos (2 (c+d x)) \csc (c+d x) \sqrt {\sec (c+d x)} \left (a (a-b) (b+a \cos (c+d x)) F\left (\left .\text {ArcSin}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right ) \sqrt {\sec (c+d x)} \sqrt {-\tan ^2(c+d x)}-\left (3 a^2-b^2\right ) (b+a \cos (c+d x)) \Pi \left (-\frac {b}{a};\left .\text {ArcSin}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right ) \sqrt {\sec (c+d x)} \sqrt {-\tan ^2(c+d x)}+a b \left (-b \tan ^2(c+d x)+(b+a \cos (c+d x)) E\left (\left .\text {ArcSin}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right ) \sqrt {\sec (c+d x)} \sqrt {-\tan ^2(c+d x)}\right )\right )}{a^2 (a-b) (a+b) d (b+a \cos (c+d x)) \left (-2+\sec ^2(c+d x)\right )} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[Sec[c + d*x]]/(a + b*Sec[c + d*x])^2,x]

[Out]

(Cos[2*(c + d*x)]*Csc[c + d*x]*Sqrt[Sec[c + d*x]]*(a*(a - b)*(b + a*Cos[c + d*x])*EllipticF[ArcSin[Sqrt[Sec[c
+ d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[-Tan[c + d*x]^2] - (3*a^2 - b^2)*(b + a*Cos[c + d*x])*EllipticPi[-(b/a),
 ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[-Tan[c + d*x]^2] + a*b*(-(b*Tan[c + d*x]^2) + (b + a*
Cos[c + d*x])*EllipticE[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[Sec[c + d*x]]*Sqrt[-Tan[c + d*x]^2])))/(a^2*(a -
b)*(a + b)*d*(b + a*Cos[c + d*x])*(-2 + Sec[c + d*x]^2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(787\) vs. \(2(291)=582\).
time = 0.25, size = 788, normalized size = 3.47

method result size
default \(-\frac {\sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\frac {2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{a^{2} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}+\frac {2 b^{2} \left (\frac {a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{b \left (a^{2}-b^{2}\right ) \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -a +b \right )}-\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{2 \left (a +b \right ) b \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}+\frac {a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{2 b \left (a^{2}-b^{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{2 b \left (a^{2}-b^{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {a^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticPi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right )}{2 b \left (a^{2}-b^{2}\right ) \left (a^{2}-b a \right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}+\frac {3 b a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticPi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right )}{2 \left (a^{2}-b^{2}\right ) \left (a^{2}-b a \right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}\right )}{a^{2}}+\frac {4 b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticPi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right )}{a \left (a^{2}-b a \right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(788\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x
+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+
2/a^2*b^2*(1/b*a^2/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/
2*d*x+1/2*c)^2*a-a+b)-1/2/(a+b)/b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d
*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2/b*a/(a^2-b^2)*(sin(1/2*d*x+1
/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Elliptic
F(cos(1/2*d*x+1/2*c),2^(1/2))-1/2/b*a/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)
/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-1/2/b/(a^2-b^2)/(a
^2-a*b)*a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*
x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))+3/2*b/(a^2-b^2)/(a^2-a*b)*a*(sin(1/2*d*x+1/
2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticP
i(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2)))+4*b/a/(a^2-a*b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2
+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2)
))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(sqrt(sec(d*x + c))/(b*sec(d*x + c) + a)^2, x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {\sec {\left (c + d x \right )}}}{\left (a + b \sec {\left (c + d x \right )}\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(1/2)/(a+b*sec(d*x+c))**2,x)

[Out]

Integral(sqrt(sec(c + d*x))/(a + b*sec(c + d*x))**2, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(sqrt(sec(d*x + c))/(b*sec(d*x + c) + a)^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(1/2)/(a + b/cos(c + d*x))^2,x)

[Out]

int((1/cos(c + d*x))^(1/2)/(a + b/cos(c + d*x))^2, x)

________________________________________________________________________________________